Optimized actuators for ultrathin deformable primary mirrors.

نویسندگان

  • Marie Laslandes
  • Keith Patterson
  • Sergio Pellegrino
چکیده

A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Design and Fabrication of Capillary Force Microactuators for Deformable Mirrors

Adaptive optics (AO) is a revolutionary technology that enhances the quality of astronomical images by correcting aberrations in them caused by atmospheric turbulence and distortions in the primary mirrors of large telescopes. The technology relies on manipulating arrays of microactuator devices mounted behind a deformable secondary mirror to correct errors in wave-fronts of incoming light. Cur...

متن کامل

MEMS Deformable Mirror Actuators with Enhanced Reliability

MEMS deformable mirrors with thousands of actuators are under development for space-based operation, which require fault tolerant actuators that will not fail due to electrical overstress. We report on advances made in the development of MEMS deformable mirror actuators with enhanced reliability for space-based, high-contrast imaging instrumentation that eliminate irreversible actuator damage r...

متن کامل

Comparative analysis of deformable mirrors for ocular adaptive optics.

We have evaluated the ability of three commercially available deformable mirrors to compensate the aberrations of the eye using a model for aberrations developed by Thibos, Bradley and Hong. The mirrors evaluated were a 37 actuator membrane mirror and 19 actuator piezo mirror (OKO Technologies) and a 35 actuator bimorph mirror (AOptix Inc). For each mirror, Zernike polynomials and typical ocula...

متن کامل

Micromachined Deformable Mirrors for Dynamic Wavefront Control

The design, manufacture, and testing of optical quality surface micromachined deformable mirrors (DMs) is described. With such mirrors, the shape of the reflective surface can be modified dynamically to compensate for optical aberrations and thereby improve image resolution in telescopes or microscopes. Over several years, we have developed microelectromechanical system (MEMS) processing techno...

متن کامل

MEMS Deformable Mirrors for Astronomical Adaptive Optics

We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imagi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 54 15  شماره 

صفحات  -

تاریخ انتشار 2015